页数:47 阅读:466 次 标签:制造系统  卡耐基梅隆大学  架构  

Architecture for Industry 4.0-based

Manufacturing Systems

Achal Arvind

上传于 2018-10-30 09:51
页数:28 阅读:556 次 标签:机器人  卡耐基梅隆大学  

AS01CH19_Mason ARI 19 February 2018 14:24

Annual Review of Control, Robotics, and

Autonomous Systems

上传于 2018-05-26 15:16
页数:9 阅读:424 次 标签:研究论文  卡耐基梅隆大学  机器人研究所  机器人技术  

The motion of the camera can cause images of pedestrians to be captured at extreme angles. This can lead to very poor pedestrian detection performance when using standard pedestrian detectors. To address this issue, we propose a Rotational Rectification Network (R2N) that can be inserted into any CNN-based pedestrian (or object) detector to adapt it to significant changes in camera rotation.

上传于 2018-01-09 10:59
页数:13 阅读:513 次 标签:研究论文  计算机视觉  卡耐基梅隆大学  机器人研究所  

This paper describes computer vision techniques for early-season measurement of vine canopy parameters; leaf count, leaf area and shoot count.

本文档是卡耐基梅隆大学机器人研究所的技术论文。

上传于 2018-01-09 10:59
页数:14 阅读:461 次 标签:研究论文  卡耐基梅隆大学  机器人研究所  机器人技术  

Keywords: Reinforcement Learning, Robotic Manipulation, Automatic Curriculum

Generation

本文档是卡耐基梅隆大学机器人研究所的技术论文。

上传于 2018-01-09 10:59
页数:14 阅读:391 次 标签:研究论文  卡耐基梅隆大学  机器人研究所  自主机器人  

Deploying a system that probes the subsurface brings its own challenges and to that end, we designed, built and field tested an autonomous robot that can collect subsurface samples using a 1m drill.

This paper describes the robot and science instruments and lessons from designing and operating such a system.

上传于 2018-01-09 10:59
页数:14 阅读:608 次 标签:研究论文  卡耐基梅隆大学  机器人研究所  机器人技术  

Our method yields R-squared correlation of 0.88 for stalk count and a mean absolute error of

2.77mm where average stalk width is 14.354mm. Our approach is 30 times faster for stalk count and 270 times faster for stalk width measurement.

本文档是卡耐基梅隆大学机器人研究所的技术论文。

上传于 2018-01-09 10:59
页数:8 阅读:551 次 标签:研究论文  语义  卡耐基梅隆大学  机器人研究所  机器人技术  

Looking Forward: A Semantic Mapping System for Scouting with Micro-Aerial Vehicles

Our ultimate goal is to enable MAVs to perform autonomous scouting. In this paper, we describe a semantic mapping system designed to support this goal. The system maintains a 2.5D map describing its belief about the location of semantic classes of interest, using forward-looking cameras and state estimation.

上传于 2018-01-09 10:59