Deriving Physical Laws with Neural Networks
Max Fusté Costa
February 2023
Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations
M.Raissia, P.Perdikarisb,∗, G.E.Karniadakisa
aDivision of Applied Mathematics, Brown University, Providence, RI, 02912, USA
Universal Physics-Informed Neural Networks: Symbolic Differential Operator Discovery with Sparse Data
Lena Podina * 1 Brydon Eastman * 2 Mohammad Kohandel
CS598: Physics-Informed Neural Networks:
A deep learning framework for solving forward and inverse
problems involving nonlinear PDEs
本文为爱思唯尔收费报告。西班牙格拉纳达大学研究人员系统梳理神经网络历史,从模型、模拟器到实现几方面阐释神经网络发展,展示了随时间推移,神经网络如何催生了计算神经学、神经工程学、计算智能和机器学习等学科。论文还探讨了与脑科学相关的信息处理研究,介绍了欧洲人类大脑计划、美国脑计划等各国神经网络相关重大科研项目,是对神经网络和计算神经科学的发展进行系统和全局理解的好资料。
作者:Alberto Prieto, Beatriz Prieto , Eva Martinez Ortigosa , Eduardo Ros , Francisco Pelayo , Julio Ortega , Ignacio Rojas